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Abstract— Cognitive acoustic (CA) is emerging as a promising technique for environment-friendly and spectrum-efficient
underwater communications. Due to the unique features of underwater acoustic networks (UANs), traditional spectrum
management systems designed for cognitive radio (CR) need an overhaul to work efficiently in underwater environments. In this
paper, we propose a receiver-initiated spectrum management (RISM) system for underwater cognitive acoustic networks
(UCANs). RISM seeks to improve the performance of UCANs through a collaboration of physical layer and medium access
control (MAC) layer. It aims to provide efficient spectrum utilization and data transmissions with a small collision probability for CA
nodes, while avoiding harmful interference with both “natural acoustic systems”, such as marine mammals, and “artificial acoustic
systems”, like sonars and other UCANs. In addition, to solve the unique challenge of deciding when receivers start to retrieve
data from their neighbors, we propose to use a traffic predictor on each receiver to forecast the traffic loads on surrounding
nodes. This allows each receiver to dynamically adjust its polling frequency according to the variation of a network traffic.
Simulation results show that the performance of RISM with smart polling scheme outperforms the conventional sender-initiated
approach in terms of throughput, hop-by-hop delay and energy efficiency.

Index Terms—Underwater cognitive acoustic networks (UCANs), spectrum management, receiver-initiated, traffic prediction
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1 INTRODUCTION

Ocean environment, where multiple networks coexist,
usually features high competition for acoustic spectrum
among different users, such as sonars, acoustic nodes
and marine animals. Meanwhile, available communica-
tion frequencies in oceans are quite limited, due to the
severe frequency dependent attenuation and narrowband
response of acoustic transducers [1]. Therefore, the spec-
trum is a scarce resource for underwater acoustic systems.

In recent years, underwater cognitive acoustic net-
work (UCAN) is advocated as a promising technique
to achieve the environment-friendly and spectrum-efficient
transmission over acoustic channel [1]–[3]. Similar to
cognitive radio (CR), nodes in UCAN are allowed to
intelligently detect whether any portion of the acoustic
spectrum is vacant, and correspondingly change their
transmission frequencies, power or other operating pa-
rameters to temporarily use the idle frequency for com-
munications without interfering other acoustic systems.

There have been many spectrum management sys-
tems proposed for cognitive radio (CR) networks [4]–[11],
which commonly consist of three components, i.e., the
spectrum sensing, the spectrum sharing and the spectrum
decision. Spectrum management for CRs has been a well-
explored research topic. However, existing systems may
work inefficiently in a UCAN due to the unique features
of acoustic communications, such as the long propagation
delay, the narrow band response of transducer and the
existence of marine animals.

In [12], the authors introduced a new delay induced
hidden terminal problem in underwater multichannel
networks, which is referred to as the long-delay hidden
terminal. This unique problem is caused by the long
propagation delay of acoustic signal in water and will
result in data collisions if not well addressed. The stud-
ies in [1] demonstrated that the narrow bandwidth of

acoustic transducers and the severe frequency-dependent
attenuation of acoustic signals could limit the available
bandwidth for UCAN to dozens of kilohertz or even less.
The authors also analyzed the impact of marine animals
as primary users on UCANs. Particularly, unlike a CR
network, where signals are mainly created by man-made
devices and have certain predictable patterns, UCANs
may need to share acoustic channels with marine animals.
There are limited understandings on the signal pattern of
marine mammals, which poses grand challenges on the
spectrum sensing and spectrum decision mechanisms.

In order to tackle the aforementioned challenges in
UCANs, we propose a receiver-initiated spectrum man-
agement (RISM) system, which allows acoustic nodes
to efficiently and friendly share the precious spectrum
resource with both “natural acoustic systems” and “arti-
ficial acoustic systems”. In RISM, the intended receiver
first schedules a sensing pattern, i.e., which frequencies
senders should work on, for its neighboring senders.
Thereafter, by collecting local sensing results from its
neighbors, a receiver will have a global picture of the
spectrum usage. Finally, for high throughput and low de-
lay purposes, the receiver assigns vacant frequencies and
optimal transmission power for its surrounding senders
based on the spectrum sensing results and the quality of
acoustic links.

The main contributions of our work are summarized
as follows:
• We propose a receiver-initiated spectrum manage-

ment system, RISM, tailored to static UCANs. RISM
can work in non-synchronized underwater networks
without a dedicated control center (e.g., base station,
access point or fusion center), which makes RISM
broad applications in real sea.

• RISM is a “semi-centralized” system, where receivers
run as “semi-center” collecting local sensing results
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and performing channel allocation for surrounding
senders for efficient and reliable data communica-
tions. Control packets, which are used for the negoti-
ation among cognitive acoustic (CA) nodes to avoid
collisions, could be easily shared by the collaborative
spectrum sensing and resource (channel and power)
allocation without generating extra traffic loads.

• To solve the when-to-poll problem in the receiver-
initiated system, we propose a smart polling scheme.
With the assistance of the traffic predictor, each re-
ceiver could estimate the traffic loads of its neighbor-
ing senders, thereby adapting its polling frequency
to the variation of network traffic. This scheme fur-
ther improves the network performance in terms of
throughput and delivery delay.

The rest of paper is organized as follows. In Section2,
we introduce the related work of spectrum management
in cognitive radios. In Section3, we describe the proposed
spectrum sharing scheme and discuss how it schedules
the control messages. Section 4 presents the collabora-
tive spectrum sensing scheme and briefly introduces a
solution for marine mammal detection. After that, we
discuss the joint channel and power allocation algorithm
in Section 5. In order to assist a receiver to poll senders
adaptively, we propose a traffic prediction based smart
polling strategy in Section6. We evaluate the performance
of RISM in Section7 and conclude the paper in Section8.

2 RELATED WORK

A spectrum management system generally consists of
three key components, including the spectrum sensing,
spectrum sharing and spectrum decision. The spectrum
sensing aims to detect the presence of PUs in a reliable
manner and to maximize the spectrum access opportunity
of cognitive nodes. The spectrum sharing scheme is to
handle the self-coexistence of cognitive nodes and elimi-
nate the data collisions. The goal of a spectrum decision
algorithm is to allocate the frequencies and transmission
power properly to improve the resource utilization.

In the past decade, various spectrum management
systems have been proposed for CR networks. The au-
thors in [9] propose a protocol called cognitive medium
access control (C-MAC) for distributed CR networks.
Each channel in C-MAC is divided into recurring su-
perframes, each of which consists of a slotted beaconing
period (BP) and a data transfer period (DTP). A node
transmits a beacon in the designated beacon slot for
multi-channel rendezvous and collision avoidance, and
sends the data in DTP.

In order to increase the spectrum opportunities while
minimizing the average time taken to sense the spectrum,
an advanced spectrum sensing scheme is proposed in
[8]. In this method, each node has two different sensing
patterns: the reactive sensing and the proactive sensing.
Nodes in the proactive sensing mode detect different
channels periodically, and the idle channels will be added
to the idle channel list for switching. Once the current
channel is occupied by PUs and there is out of an avail-
able channel in the idle channel list, the reactive sensing
mode will be triggered for an opportunistic spectrum
access. The authors in [10] explore the method to optimize

the spectrum sensing time based on the traffic rate of the
cognitive network.

The cooperative spectrum sensing is highly advocated
to further improve the sensing accuracy and efficiency.
In [7], a dynamic frequency hopping communication
(DFHC) scheme is proposed for centralized spectrum
management. In this scheme, each CR node is supposed
to work on two separate sub-channels simultaneously.
During the data transmission on one frequency band, the
node could sense the other intended channel in parallel.
All cognitive nodes in DFHC need to upload the sensing
results to a leader, while the leader will calculate the
hopping patterns for the cognitive nodes. The authors
in [11] propose a multi-channel MAC for CR (MMAC-
CR). MMAC-CR consists of two phases: an ad hoc traffic
indication message (ATIM) phase and a data phase. The
ATIM phase is designed for synchronization, fast scan
spectrum sensing and channel competition for the follow-
ing data phase, i.e., channel rendezvous. Cognitive nodes
exchange scan results to perform cooperative sensing.
In the data phase, nodes that are assigned the same
channel compete for the channel access using traditional
handshake approach similar to IEEE 802.11.

In most of the aforementioned approaches, senders
initiate the negotiation for spectrum competition. The
spectrum sensing, spectrum sharing, and spectrum de-
cision are designed and optimized separately, and use
individual control packets on each component. The over-
head issue for the whole system, however, is usually
overlooked, especially when taking into account the long
propagation delay, the long preamble and the bandwidth
constraints in acoustic communications [13]. This pro-
motes us to design a new receiver-initiated spectrum
management system, RISM, for UCANs.

Compared with sender-initiated systems, we could
obtain several benefits by starting a handshake process at
the receiver. Specifically, each receiver in RISM could run
as a “semi-center” collecting local sensing information
from neighboring nodes for a reliable primary user (PU)
detection, and performing joint channel and power allo-
cation for surrounding senders. Therefore, the spectrum
sensing mechanism, the spectrum sharing scheme, and
the spectrum decision algorithm could be considered as a
whole in the new system. In addition, the control packets
are shared amongst different components, thereby signif-
icantly reducing the overhead traffic and improving the
channel utilization.

3 RECEIVER-INITIATED SPECTRUM SHARING

We first introduce the receiver-initiated spectrum sharing
(RISS) scheme, the backbone of RISM. In RISS, a hand-
shake process is initiated at the receiver side to negotiate
the vacant spectrum sharing.

3.1 Description of RISS
In RISS, a node needs to know the propagation delay
to its neighbors, which could be measured at the ini-
tialization stage of a network through the classic two-
way handshake approach that has been tested in the sea
experiment [14]. Furthermore, we assume that there is
a common control channel (CCC), which is physically
separated from the in-band data channel, as it is widely
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Fig. 1. Six phases of the RISS scheme. R is a receiver and si is sender i.

accepted in cognitive networks [15]. RISS involves six
phases, as shown in Fig.1.

Phase 1: The receiver, which intends to collect data,
sends out a request-to-receive (RTR) packet to its neigh-
bors to start a handshake process. Here, the RTR mes-
sage has three functions: (a) to help the receiver request
data from neighborhoods, (b) to arrange the transmis-
sions of available-to-send (ATS) packets from neighboring
senders, and (c) to schedule the spectrum sensing pattern
for senders.

Phase 2: The invited senders, which have data for
the receiver, will first sense the frequency as arranged
and respond with ATS messages to establish connections
with the receiver. In order to avoid collisions among
ATS packets, senders transmit ATS following the schedule
ordered in RTR. Here, the ATS has four functions: (a) to
establish a connection with the receiver, (b) to inform the
receiver of its number of data packets to send, (c) to notify
the receiver about the spectrum usage of other cognitive
users for collision avoidance, which will be introduced in
Section 5.2, and (d) to upload the local sensing result for
a collaborative PU detection.

Phase 3: After ATS packet reception, the receiver
aggregates local sensing outcomes from its neighboring
senders for the final spectrum decision. Then it broadcasts
an ORDER packet, which includes information about the
frequency allocation and the transmission power assign-
ment for its neighbors.

Phase 4: If a sender successfully receives the ORDER
message, it extracts its own schedule information and
broadcasts this information through a REPEAT packet
to its neighborhood. This process is to avoid a data
collision with other receivers, which will be discussed in
Section5.2.

Phase 5: After the transmission of REPEAT, each
sender sends out its DATA packet at the scheduled time
according to the ORDER message it received in Phase 3.

Phase 6: Finally, for the purpose of reliable trans-
mission, the receiver replies a common acknowledgment
(ACK) to all senders after the data reception.

Here, RTR, ATS, ORDER, REPEAT and ACK are all
control packets and thus, share the CCC. From the above
description, it is easy to obtain that though there are six
phases in RISS, each round of negotiation allows multiple
senders to reserve the channel. In addition, the receiver in
RISS can effectively work as a fusion center to schedule
the sensing pattern and to collect local sensing results for
collaborative PU detections, and it could also play a role
as the control center to arrange the data transmission of
its surrounding senders. This is why we call RISM as a

“semi-centralized” system.

3.2 Scheduling of ATS Transmission
As introduced in Phase 1 in Fig. 1, each receiver in
RISS needs to schedule the transmission of ATS messages
for its neighbors. In order to avoid ATS collisions, the
arriving time of ATS packets from different senders to
a common receiver should be staggered. Moreover, a
minimal ATS reception time is preferred to reduce the
overhead on handshakes and to improve the utilization
of control channel.

Now, let r, si and τi denote the receiver, sender i ,
and the propagation delay between r and si, respectively.
SL is the set of si, where L is the size of SL. Assume at
t0, a receiver transmits an RTR packet, and then receives
ATSi from si at the receiver’s local time ti, where i ∈
{1, . . . , L}. The transmission time of RTR and ATS are
denoted by TRTR and TATS, respectively. Let wi represent
the time difference between the RTR reception and the
ATSi transmission on si.
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Fig. 2. The schedule of ATS transmissions. A square with solid line
and dash line represent a transmission and a reception, respectively.

The receiver needs to calculate wi for each sender
to minimize the total time for all ATS receptions while
avoiding collisions among ATS messages. In Fig. 2, we
use three senders as an example to show the optimal
scheduling for ATS transmissions.

According to the propagation delay between the re-
ceiver and the sender i, we have

wi = ti − (t0 + TRTR)− 2τi, i ∈ {1, . . . , L}. (1)

Then, we sort senders in SL by the propagation delay in
an ascending order. Let Tm be the local time that the last
ATS packet arriving at the receiver, i.e., Tm = max{ti},
i ∈ {1, . . . , L}. Now, optimizing the total reception time
of all ATS packets is equivalent to minimizing Tm.

Suppose ATSi is the lth of L ATS packets arriving at
the receiver, then (1) can be written as:

wi=Tm−(L−l)TATS−(t0+TRTR)−2τi, i ∈ {1, . . . , L}. (2)
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Note that wi≥0, so from (2) we have

Tm≥(L− l)TATS+(t0 + TRTR)+2τi, i ∈ {1, . . . , L}. (3)

From (3) we observe that in order to minimize Tm, the
order of ATS reception should follow the order of senders
in SL. More specifically, an ATS packet from a sender
with a larger propagation delay (larger τ ) should come
after the one from a closer sender (smaller τ ), and vice
versa. Therefore, let l= i and we have the minimum Tm
is

Tm=arg max
i

{
(L−i)TATS+(t0+TRTR)+2τi

}
, i ∈ {1, . . . ,L}.

(4)
Finally, the receiver calculates ti by ti = Tm − (L −

i)TATS for each sender, and then attaches the scheduled
time [t0, t1, . . . , tL] and the MAC addresses of corre-
sponding senders on an RTR packet. After the RTR recep-
tion, sender si delays for wi= ti−t0− 2τi before replying
its ATS.

From above descriptions we have that at the sender
side, the wait time, wi, before an ATS transmission de-
pends on the time difference, ti − t0. Therefore, the
knowledge of receiver’s local time is not necessary at the
sender side, which allows the above ATS scheduling to
operate in a non-synchronized UCAN.

4 SPECTRUM SENSING

Generally speaking, a CA node may not be able to sense
all frequencies in one sensing period, since a full-band
spectrum sensing is not only energy and time inefficient,
but also hardware demanding, which make it impractical
for battery-powered underwater equipment. Thereafter,
we consider the scenario that each CA node could only
sense one or several subset frequency bands in one sens-
ing period. In this section, we elaborate how nodes in a
UCAN detect signals from PUs and perform collaborative
spectrum sensing in an RISM system.

4.1 Spectrum Usage Realization

In an asynchronous UCAN, when a node is sensing the
spectrum, other senders may be transmitting on the same
channel, which will interfere with the sensing process.
Nodes in RISM are thus required to distinguish signals
of PUs from that of CA nodes. Here, we advocate cyclo-
stationary based spectrum sensing approaches to achieve
this goal.

Different man-made communication signals naturally
have cyclostationary features at different cyclic frequen-
cies [16]. By recognizing the cyclostationary pattern dur-
ing spectrum sensing, CA nodes can distinguish between
received signals from different systems.

However, one objective of UCANs is to share
the acoustic spectrum with marine animals in an
environment-friendly manner. Hence, PU in oceans may
involve not only “artificial acoustic systems”, like UANs
and sonars, but also “natural acoustic systems”, such as
whales and dolphins. One important question coming up
is that whether signals from “natural acoustic systems”
and from CA nodes can be told apart by applying a
cyclostationary based sensing technique. Here, we com-
pare the cyclostationary based time-smoothed cyclic cross

periodogram [17], Sαx [k]1, of different acoustic signals in
Fig.3. The results may help us to answer this question.

Fig.3 includes 4FSK signal, which is common in man-
made communication systems, and voice signals from
two different marine mammals. This figure illustrates
that both 4FSK and voice signals from marine mam-
mals exhibit cyclostationary feature on multiple cyclic
frequencies. Moreover, it is easy to observe the obvious
differences among cyclostationary patterns of different
signals, which could be used in RISM for local spectrum
sensing.

4.2 Collaborative Spectrum Sensing
After local sensing, senders transmit their sensed out-
comes to the receiver via ATS packets. The receiver fuses
these local results together for a collaborative PU detec-
tion. An example of a cyclostationary based collaborative
spectrum sensing, which is well supported by the RISM
system, could be found in [18].

In order to maximize the channel access opportunities
while preventing intrusions to PUs, it is important to de-
sign an efficient sensing pattern [4]. Owing to the “semi-
centralized” feature of an RISM system, the receiver could
choose different sensing patterns to achieve varied goals:

(a) Maximize the spectrum access opportunity. In or-
der to maximize the probability to discover vacant
spectrum, senders in this pattern are assigned to
detect different frequency bands for increasing the
sensing coverage.

(b) Maximize the sensing accuracy. To overcome the
fading and shadowing effects, a collaborative sens-
ing strategy could be exploited for a reliable PU de-
tection. Multiple senders, in this case, are arranged
to sense the same frequencies.

(c) Hybrid spectrum sensing. This sensing pattern is
a trade-off between maximizing the channel access
opportunity and maximizing the sensing accuracy.
Neighboring senders in this pattern are divided into
multiple groups. Different groups take charge of
different subsets of frequencies while senders in the
same group sense the same frequency.

Depending on varied requirements, RISM system
could easily support all above sensing patterns by lever-
aging its “semi-centralized” structure. More specifically,
as a control center, the receiver schedules the sensing pat-
tern for its neighbors through an RTR message, and then
collects and fuses local sensing results from neighboring
nodes through ATS packets.

5 SPECTRUM DECISION

When assigning vacant frequencies for communication,
receivers need to schedule the data transmission for its
intended senders carefully to avoid potential collisions. In
addition, CA nodes in an underwater environment usu-
ally experience severe frequency selective fading. How-
ever, a frequency which appears in deep fading to a node
may be of good quality for other nodes. Therefore, a

1. Sαx [k]=
1
D

∑D−1
d=0 Xl[k]X

∗
l [k − α]W [k], where α, D, M , W [k]

andXl[k] are the cyclic frequency, the number of windows, the num-
ber of samples, the smoothing spectrum window and the Fourier
transform of the sensed signal x[n], respectively.
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(a) Ambient noise (b) 4FSK

(c) Blue dolphin (d) Minke

Fig. 3. Normalized cyclic cross periodogram of different acoustic signals in oceans with Hamming window. This figure demonstrates
that the ambient noise does not exhibit the cyclostationary feature, since its cyclic cross periodogram has no peaks if α 6=0. By contrast, Sαx [k]
of 4FSK, blue dolphin and minke signals show additional peaks at different α, where α 6=0. A node could use the position of these peaks to
identify sensed signals.

receiver should dynamically allocate the frequency and
power to senders based on their channel situations. In
this section, we introduce how to take advantage of a
dedicated collision avoidance mechanism with a dynamic
spectrum decision algorithm to achieve the aforemen-
tioned goals.

5.1 Channel Model

In this paper, we use the following multi-channel model.
Each CA node has a single half-duplex acoustic trans-
ducer, which can switch to different channels for either
transmission or reception. Let N and K be the number of
available data channels and the amount of surrounding
senders, which have replied ATS for data transmission,
respectively. Let t represent a local time of the receiver.

The frequency allocation matrix at time t is repre-
sented as At, where each entry atnk ∈ {0, 1}. If channel
n is assigned to node k, then we set atnk = 1, otherwise
atnk = 0. The transmission power and data transmission
rate of sender k on channel n is denoted by ptnk and
Rtnk, respectively, which will be jointly allocated by the
receiver. Let Pk denote the total transmission power
assigned to sender k.

In a communication system, if the instantaneous chan-
nel state information (CSI) is available, the receiver could
schedule sender k to transmit at the maximum rate
Rtnk = Ctnk. Here, Ctnk is the channel capacity of node
k on channel n at time t, which is expressed as

Ctnk = atnkBn log2(1 +
ptnk|htnk|2

N0Bnatnk
), (5)

where htnk is the instantaneous channel gain between
sender k and the receiver on channel n, Bn is the band-
width of channel n, and N0 is the noise spectral density.

However, the real-time channel gain is usually un-
available in UCANs due to the long propagation delay
and the high dynamic of underwater channel. Therefore,
we use the outage probability2, which only requires the
statistical knowledge of htnk, to calculate the channel
capacity. The statistical information of htnk is stable and
easy to get in underwater communications [1].

Depending on the quality of service (QoS) require-
ment, the packet loss ratio between sender k and the
receiver on channel n should be equal to or less than a
predetermined outage probability βnk. That is

Pr[Rtnk > Ctnk] = βnk. (6)

Now, let f(|htnk|2) represent the probability distri-
bution function (PDF) of |htnk|2. Depending on the real
deployment of a network and the certain ocean environ-
ment, the channel gain could be modeled as Rayleigh dis-
tribution [20], K-distribution [21] or Rice distribution [22].
RISM system is generic to arbitrary channel models. In
this paper, we use Rayleigh distribution as an example
to show how the proposed spectrum decision mechanism
works.

Assume that |htnk| follows Rayleigh distribution, then
f(|htnk|2) is an exponential distribution with mean value

2. If one packet is transmitted with spectral efficiency S(ρ) (in
bit/sec/Hz) and SNR ρ, the probability that this packet will be
correctly decoded is 1−β, i.e., Pe(ρ, S(ρ)) = β. Then Pe(ρ, S(ρ))
is called as the outage probability [19].
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λnk. Substituting (5) into (6) and using the exponential
expression of f(|htnk|2), we have

Rtnk = atnkBn log2

[
1 +

ptnkλnk ln( 1
1−βnk

)

N0Bnank

]
, (7)

which will be used for the spectrum decision in Sec-
tion 5.3.

5.2 Collision Avoidance in Channel Allocation
In UCANs, multiple CA nodes may need to share a
limited number of vacant frequency bands. When as-
signing frequencies to neighboring senders, a receiver in
RISM should take into account the sending and receiving
activities of the nodes within its two hops to mitigate the
hidden terminal problem.

Here, we introduce a collision avoidance matrix,
which will be later used in the spectrum decision algo-
rithm. We define Ct to be the collision avoidance matrix,
with each entry ctnk ∈ {0, 1}. Here, ctnk = 1 indicates
that the channel n is not available for sender k at the
receiver’s local time t. If any DATA packet of sender k is
arranged to transmit on this channel at time t, collisions
would happen. Let τk be the propagation delay between
the sender and the receiver k. Next, we present how to
calculate the value of each entry in Ct based on three
constraints.

Packet forwarding constraint: As described in Sec-
tion 3.1, a sender needs to broadcast a REPEAT packet
before its DATA transmission. Therefore, when scheduling
the sending time of DATA packet for a transmitter, the
receiver should leave enough time to this sender for its
REPEAT packet transmission. Let t0 be the local time
when a receiver sends out an ORDER packet. Denote the
transmission time of ORDER packet and REPEAT packet by
TORDER and TREPEAT, respectively. Then, we have ctnk=1, if
t < t0 + 2τk + TORDER + TREPEAT.

Transmission constraint: When a receiver schedules a
DATA transmission for an intended sender, it should pre-
vent intrusions to other receivers’ receptions. As shown in
Fig.4, receiver r2 is planing to collect DATA from sender s,
where s is in the communication range of both r1 and r2,
but r1 and r2 cannot hear from each other. The receiver r1
reserved channel n from its local time ta to tb to receive
data from neighboring senders (not s). In order to avoid
interference to r1, s cannot transmit on channel n from
its local time t′a to t′b. Here, we call this as transmission
constraint.

Senders in RISM need to inform the receiver of their
transmission constraints by following the steps below.
Upon overheard ORDER1 from r1, s calculates t′a and t′b
based on t′a= t′0 + ta−t0−2τ1 and t′b= t′a + tb−ta, where
t0, ta, tb are included in ORDER1, t′0 is the local time when
s overhears the ORDER1, and τ1 is the propagation delay
between s and r1. The time stamps t′1, t′a and t′b will
be sent to r2 through ATS so that r2 could update the
collision avoidance matrix accordingly. More precisely,
we set ctns = 1 on receiver r2 if t ∈ [t′′a, t

′′
b ], where

t′′a= t′′1+t′a−t′1 and t′′b = t′′a+t′b−t′a. Here t′′1 is the local time
when r2 receives the ATS packet.

Reception constraint: When arranging a data recep-
tion, the receiver should guarantee that it will not be inter-
fered by neighboring senders’ transmissions. As shown

ORDER1

ATS

ATS

r1

s

r2
ORDER2

ORDER2

Data Packet Train

CANNOT SEND

0t at bt

'

1t

''

1t

'

at
'

bt

''

at
''

bt

ORDER1

'

0t

T

Fig. 4. When receiver r2 schedules a data transmission for its in-
tended sender s, it should prevent intrusions to any other receivers,
such as r1.

in Fig. 5, receiver r1 has scheduled to receive data from
sender s on channel n from its local time ta to tb and
announced the arrangement through ORDER1. When the
sender receives ORDER1, it transfers the time stamps (t0,
ta and tb) to its local time (t′1, t′a and t′b) and attaches the
information in REPEAT1. Since r2 is also in the commu-
nication range of s, r2 cannot use channel n to receive
DATA from its local time t′′a to t′′b for collision avoidance
purposes. We call it as reception constraint. The entry in the
collision avoidance matrix of r2 is thereby set ctns = 1, if
t ∈ [t′′a, t

′′
b ], where t′′a= t′′1+t′a−t′1 and t′′b = t′′a+t′b−t′a. Here

t′′1 is the local time when r2 overhears REPEAT1.

REPEAT1

r2

s
ORDER1 Data Packet Train

ORDER2

0t
REPEAT1

r1
ORDER1 Data Packet Train

CANNOT RECEIVE

at bt

''

at
''

bt

'

at
'

bt
REPEAT1

T

'

1t

''

1t

T’

Fig. 5. When receiver r2 schedules a data reception, it should
guarantee that there is no interference from any other surrounding
senders, like s.

From the above descriptions, we observe that the
calculation of entries in Ct is completely based on the
local time of the receiver, which does not necessitate the
absolute time of neighboring users. Therefore, it can work
in a non-synchronized UCAN.

5.3 Joint Channel and Power Assignment

Recall that from the collaborative spectrum sensing, each
receiver obtains the identifications (IDs) of vacant chan-
nels. In this section, we introduce how to jointly allocate
channel and power to maximize the spectrum utilization.

In RISM, senders inform the receiver, through ATS
messages, of how many data packets to be sent out.
Different nodes may have varied sending requests in
each transmission. Now, let Q and Tr denote the total
bits of data a receiver will receive and the time spent on
receiving these data, respectively. Then, we have

Q=

∫ Tr

0

N∑
n=1

K∑
k=1

Rtnk dt, (8)

where Rtnk is the assigned data rate to sender k on
channel n at time t.

We aim to minimize Tr in (8), which is equivalent to
maximizing

∑N
n=1

∑K
k=1R

t
nk as Q is fixed. Therefore, we
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formulate the joint power and frequency allocation as the
following optimization problem:

Prob.1 arg max
pt
nk

>0

at
nk

∈{0,1}

N∑
n=1

K∑
k=1

Rtnk,

where Rtnk=atnkBn log2

[
1+

ptnkλnk ln( 1
1−βnk

)

N0Bnatnk

]
.

s.t.

C1:
∑K
k=1 a

t
nk = 1, n ∈ {1, . . . ,N},

C2:
∑N
n=1 p

t
nk ≤ Pk, k ∈ {1, . . . ,K},

C3: atnk = 0, if ctnk = 1, n∈{1, . . . ,N}, k∈{1, . . . ,K}.
(9)

In Prob.1, C1 is the channel allocation constraint which
ensures that each channel is assigned to no more than
one CA sender; C2 is the power constraint to guarantee
that the overall transmission power of each sender does
not exceed the maximum power supply, and C3 is the
collision avoidance constraint.

As introduced in Section 5.2, C3 is the combination of
three constraints, namely, packet forwarding constraint,
transmission constraint and reception constraint. It is a
unique constraint condition in Prob.1, which integrates
the collision avoidance mechanism on the MAC layer
with the power and channel assignment on the physical
layer closely.

If without the constraint condition, C3, we can use
a similar approach proposed in [23] and [24] to solve
Prob.1. We first relax the requirement atnk ∈ {0, 1} to
allow atnk to be a real number within the interval [0, 1].
Then, the objective function of the problem follows the
form of f(x, y) = µx log2(1 + νy/x), where µ and ν
are constants. It is easy to prove that the Hessian matrix
of this function is negative semidefinite for all x and
y. Therefore, the objective function is concave. Finally,
Prob.1 could be solved through the following classic
method of Lagrangian multipliers:

L(atnk, p
t
nk) =

N∑
n=1

K∑
k=1

Bna
t
nk log2

[
1+

ptnkλnk ln( 1
1−βnk

)

N0Bnatnk

]
− φk

( N∑
n=1

pnk − Pk
)
− ϕn

( K∑
k=1

atnk − 1

)
,

(10)
where φk and ϕn are the Lagrangian multipliers of the
constraints C1 and C2, respectively.

Calculating the partial derivatives of L(atnk, p
t
nk) with

respect to atnk and ptnk, we have

∂L
∂ptnk

=
atnkBnθnk

ln(2)(atnkBn + θnkptnk)
− φk, (11)

and
∂L
∂atnk

= Bn log2(1 +
ptnkθnk
atnkBn

)

− ptnkBnθnk
ln(2)(atnkBn + θnkptnk)

− ϕn,
(12)

where

θnk =
λnk ln( 1

1−βnk
)

N0
. (13)

Now, let (11) and (12) equal to zero, we have

ptnk =
atnkBn
φk ln(2)

− atnkBn
θnk

, (14)

and

ln

(
1

1 +Xnk

)
− 1

1 +Xnk
= −

[
ln(2)ϕn
Bn

+1

]
, (15)

where

Xnk =
ptnkθnk
Bnatnk

. (16)

We note that the subscripts of variables at the left side
of (15) include n and k, but those at the right side of
the equation only contain n. This implies that Xnk is
independent with k and thus, we have

Xn1 = Xn2 = · · · = XnK . (17)

According to (16) and (17), we conclude that atnk should
be proportional to ptnkθnk/Bn.

Now, we rethink the original constraint C2 of requir-
ing atnk to be a binary value. With this constraint, channel
n would be allocated to the sender k′, which has the
largest atnk. Therefore, the optimal values of atnk and ptnk
are

âtnk′ = 1, âtnk = 0 for all k 6= k′, (18)

where

k′ = arg max
k

ptnkθnk
Bn

, k ∈ {1, . . . ,K}, (19)

and

p̂tnk=


0, φk≥

θnk
ln(2)

or atnk 6=1 or ctnk=1,

min

{
Bn

φk ln(2)
− Bn
θnk

, Pk

}
, otherwise.

(20)
Let vector At

k be the channel assignment to sender k at
time t, which is a collection of row indexes with nonzero
elements in the kth column of Ât. Substituting (20) into
constraint C2 of Prob.1, we have

φk =

∑
n∈At

k
Bn

ln(2)

[
Pk+

∑
n∈At

k

Bn
θnk

] . (21)

Finally, we get the optimal transmission power, p̂tnk, by
substituting (21) into (20).

Next, we take into account the constraint condition
C3 and use an iterative algorithm to compute p̂tnk and
âtnk in RISM.

Algorithm 1

Initialization: Based on the infromation of spectrum
usage collected from ATS and REPEAT packets, the
receiver generates its collision avoidance matrix Ct.

Iterative Calculations:
do

for n = 1 to N
Step 1: Let atnk = 1 for each sender, k, in turns if
ctnk 6= 1, and calculate φk according to (21). In this
step, previous channel allocation an′k, n′ 6=n remains
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unchanged.
Step 2: Use (20) to calculate ptnk.
Step 3: Pick out the best sender, k′, based on (19), and
set atnk′ =1.

end for
Step 4: Calculate

∑N
n=1

∑K
k=1R

t
nk in Prob.1.

while The increment of
∑N
n=1

∑K
k=1R

t
nk is larger than a

predetermined threshold.

After running Algorithm 1, the receiver attaches the
sending time of data packets, the channel assignment,
transmission power and data rate into an ORDER, and
delivers the packet to intended senders.

5.4 An Insight into Collision Avoidance Matrix
The matrix Ct in the RISM system is a critical “bridge” to
connect the joint channel and power allocation algorithm
on the physical layer with the collision avoidance mecha-
nism on the MAC layer. In each round of communication,
a receiver needs to update its Ct according to the occur-
rence of certain events. Next, we introduce how a specific
event triggers a change of collision avoidance matrix by
affecting the status of channel usage.

s1

r1

s2

C1

C2

C1

C2

C1

C2

C1

C2

C1

C1

E1

E2 E3

Transmission at S1 

Reception from S1 

Transmission at S2 

Reception from S2 

Reception interruption

t

t

t

C2

C2 C2

C2

Transmission interruption

E4 E5

E6

Fig. 6. The events that affect the channel status. E1: s2 joins the
channel allocation; E2: reception at r1 is interrupted on c2; E3: re-
ception interruption ends on c2; E4: transmission at s1 is interrupted
on c2; E5: transmission interruption ends on c2; E6: transmission
completes and c1 is released.

In RISM, there are a total number of six specific events
that may change the channel status (idle or busy). Here,
we use Fig. 6 as an example to introduce these events. In
the figure, we have two senders, s1 and s2, and a common
receiver, r1. The propagation delay from s1 to r1 is shorter
than that from s2. Assume r1 arranges s1 and s2 to send
the data simultaneously. We further assume that s1 has a
good channel quality on c2 whereas s2 prefers channel c1.
The six events are introduced as follows.

(a) Sender join (E1): The event that a new sender joins
the channel allocation. Particularly, in a network,
the distances from senders to a common receiver
vary. Hence, senders in RISM usually join a channel
allocation one by one. Each time when a sender
joins, the receiver redoes channel and power op-
timization.

(b) Reception interruption (E2): The event that a re-
ceiving process is interrupted on a specific channel.
According to the reception constraint introduced in
Section 5.2, a receiver may suspend its data recep-
tion on a certain channel for a while to avoid the
interference from other transmitters.

(c) Reception interruption release (E3): The event that
the interruption ends and a receiver can resume its
data reception.

(d) Transmission interruption (E4): The event that a
sender suspends its data transmission on a specific
channel to prevent intrusions to the reception of
neighboring receivers.

(e) Transmission interruption release (E5): The event
that the potential interference to surrounding re-
ceivers ends and the sender can resume its data
transmission on a given channel.

(d) Sender leave (E6): The event that a sender com-
pletes its data transmission and releases the chan-
nel. More specifically, in each round of communica-
tion, senders usually finish their data transmissions
at a varied time, since both the amount of data
packets and the transmission rates are different.
Therefore, when a node finishes its data transmis-
sion, the channel will be available to other senders.

It is worth noting that a receiver in RISM knows
the occurrence of above events before they happen, as
the channel usage is up to date by overhearing ORDER
and REPEAT messages and by calculating the constraints
described in Section5.2. Once an event happens, the status
of the channel will change. In this situation, the receiver
flips the corresponding elements in its collision avoidance
matrix Ct between 1 and 0. Thereafter it needs to run
Algorithm 1 for a new round of channel and power
allocation. Finally, as shown in Fig. 6, once the packet re-
ception starts, the data streams from different senders will
arrive at the receiver seamlessly. This allows CA nodes to
fully utilize the channel resource for communications.

6 ADAPTIVE POLLING IN RISM
In receiver-initiated approaches, there is a unique chal-
lenge that receivers need to decide when to poll the
neighboring senders blindly. It becomes a big problem
in a distributed network, since receivers usually lack in
the current status e.g., having packets to send or not, of
its intended senders. In this section, we discuss how to
handle this problem in RISM with a traffic predictor.

6.1 Why Polling Senders Adaptively
Adjusting the polling frequency of a receiver will cause
a trade-off between the queuing delay and the energy
efficiency. Initiating handshake over frequently results in
resources (spectrum, energy and time) waste for transmit-
ting control messages, whereas slowing down the polling
rate occasionally leads to larger queuing delay such that
the data cannot be delivered timely. In a receiver-initiated
protocol, a receiver should adjust its polling frequency,
i.e., the time interval between successive RTR requests, to
match the traffic loads on its intended senders.

However, it is a challenge for a receiver to poll
surrounding senders adaptively due to the following
reasons. First of all, the receiver has no prior knowl-
edge regarding the number of data packets cumulated
on the intended senders. Intuitively, a sender could in-
form the receiver this information by sending additional
messages. However, considering the long preamble in
acoustic modems and the energy constraint in UCANs,
such a strategy would generate extra overhead traffic and
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reduce the lifetime of the network. Therefore, senders in
RISM have to passively wait for the receiver to initiate the
handshake process. Secondly, the traffic load is generally
heterogeneous in a network. It becomes more difficult
to decide the optimal polling frequencies for different
senders. Finally, the traffic load of a node may change
with the time. For example, in a target tracking network,
nodes generate bursty traffic to report their observations
whenever the presence of a target is detected while keep-
ing quiet for the rest of time to save the energy.

In order to tackle the above challenges, each receiver
in RISM system needs to decide its data polling frequency
independently to adapt to the heterogenous and varying
traffic of a network. A smart polling strategy is thus
required to improve the network performance.

6.2 Smart Polling Scheme
In RISM, we adopt the traffic prediction to implement
the smart polling scheme. By using the traffic predictor,
a receiver could estimate the current traffic loads of its
intended senders through historical traffic measurements.
Whenever the total traffic of neighboring senders exceeds
a threshold, the receiver sends out an RTR packet to
request for data.
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Fig. 7. An RLS based adaptive polling scheme for RISM system.

In the literature, a number of algorithms, such as the
adaptive filter [25] and artificial neural network [26] have
been proposed for predicting the network traffic. In RISM,
we could choose an appropriate method depending on
the demand of an application. For instance, in a target
detection network, the traffic load of a sensor node may
change quickly with the entering and leaving of a target.
In this scenario, a receiver could employ a recursive least
squares (RLS) filter, which has a fast convergence, to
track the traffic variation of its neighbors. Moreover, if
the traffic of a UCAN is non-linear, non-stationary and
non-Gaussian but changes slowly, a receiver could use
a finite-impulse-response artificial neural network (FIR-
ANN) [27] for traffic prediction.

In Fig. 7, we use the RLS filter as an example to
introduce how to design a smart polling scheme for
the RISM system. Here, we call the time interval for a
receiver and its intended senders completing one round
of communication (Phase 1 to Phase 6 in RISS) as a period,
and then the details of a smart polling scheme are as
follows:

(a) Before transmitting an RTR message, the receiver
first estimates the number of data packets,

∑K
k=1 d̂

c
k,

currently cumulated on all K intended senders,
where d̂ck = q̂ck×∆tc,j−1k . Here, q̂ck is the estimation of
current traffic load on sender k, and ∆tc,j−1k is the
elapsed time since receiving the ATSj−1k packet. The
receiver initiates a handshake if

∑K
k=1 d̂

c
k exceeds

the threshold, which is denoted by γ, otherwise it
will wait for longer time.

(b) Based upon ATSjk, the receiver calculates the av-
erage traffic rate, denoted by qjk, of sender k dur-
ing the last period according to djk/∆t

j,j−1
k , where

∆tj,j−1k is the time interval between the receptions
of ATSjk and ATSj−1k . Then the receiver uses the
latest l measurements, {qjk, . . . , q

j−l+1
k }, to update

the weight vector, which is denoted by Wj
k, of its

RLS filter. Here, l is referred to as the order of a RLS
filter.

(c) The receiver applies the new weight, Wj
k, to predict

q̂j+1
k — the traffic rate of sender k in the next period.

By adjusting the threshold γ in the traffic predictor,
a UCAN could achieve a tradeoff between the queuing
delay and the energy efficiency. More specifically, with
a small γ, the data produced by each sender could be
sent out timely, whereas, with a large γ, each round of
communication could carry more data packets, which
improves the energy efficiency.

7 SIMULATIONS AND ANALYSIS

In this section, we conduct simulations to evaluate the
performance of RISM system. The simulation platform
is Aqua-Sim [28], an NS-2 based underwater network
simulator. We extend Aqua-Sim to support multi-channel
communications, dynamic power and channel assign-
ments. Simulation results verify the enhanced network
throughput, delivery delay and energy efficiency of RISM
with smart polling. We also compare RISM with MMAC-
CR [11] in different network settings. All results presented
in this section are the average outcomes of multiple tests.

One of the real applications we considered in the sim-
ulation is an underwater target tracking network, where a
UCAN with the bottom nodes, autonomous underwater
vehicles (AUVs) and surface nodes is deployed in oceans
to detect the presence of interesting targets, e.g., marine
animals or submarines. If the nodes have not sensed
any specific target yet, they stay in the sleep mode to
save power. In this case, each node generates only a few
packets periodically to update the routing table or to
synchronize time. The sensor nodes become active once
any target enters the network, thereby creating a bursty
traffic. In order to prevent the UAN from interfering
surrounding underwater systems (PUs), like sonar or
marine animals, we apply the cognitive technique for
environment-friendly data transmissions.

We evaluate the performance of RISM in two typical
network topologies, as shown in Fig. 8. The tree network
is usually applied for underwater data collection while
the mesh topology network is a general example of ad
hoc UANs. In the tree topology, we have 20 sub-sea
nodes collecting and forwarding data to the sink node
on the surface of the ocean, as illustrated in Fig. 8(a). In
the partially connected mesh network, we deploy four
hydrophones at four corners as sink nodes, as shown in
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(a) Tree topology (b) Partially connected mesh topology

Fig. 8. Two network topologies used in simulations. (a) In the tree topology, 20 underwater nodes in the network deliver their data to a
surface buoy. (b) In the partially connected mesh topology, 16 underwater nodes randomly select a node at four corners as the destination for
data transmission.

Fig. 8(b). In the network, 16 sub-sea nodes generate and
deliver data to a randomly selected hydrophone. In both
topologies, the size of data packets is 250 bytes.

The average distance between neighboring nodes is
1 kilometer (uniformly distributed between 800 meters
to 1200 meters) in both topologies. We set the maxi-
mum transmission range and the maximum transmission
power of each node as 1.5 kilometers and 20 watts,
respectively. The overall available channel bandwidth
in the simulation is 30 kHz (from 1 kHz to 31 kHz),
which is evenly divided into six subbands. We assign
the lowest subband (1 kHz to 6 kHz) to be the CCC
and assume this channel is not occupied by any PUs in
the area. The remaining five subbands are used as data
channel. In the network, we also deploy two PUs. Each
of them randomly selects one amongst five data channels
for its communication, and switches the communication
channel every 60 seconds.

7.1 Performance Evaluation
We first evaluate the joint channel and power assignment
in RISM by comparing the transmission rates in scenarios
with and without optimal resource allocation. In this
comparison, we let three intended senders transmit on
four vacant channels to a common receiver.

Fig.9 illustrates the average transmission rate of three
senders. In the random allocation strategy, the receiver
randomly allocates one channel to each sender with the
maximum transmission power. The optimal assignment
with continuous atnk supposes that multiple senders
could share one channel simultaneously, which is un-
realistic in the real world, but could be considered as
an upper bound of the transmission rate. The channel
allocation algorithm applied in RISM is a sub-optimal
solution, in which one channel is allocated to no more
than one sender. From this figure, it is easy to observe a
significant improvement on the average transmission rate
in RISM system over the random assignment. In addition,
the sub-optimal channel allocation is only slightly lower
than the optimal solution. This verifies that RISM could
utilize the channel and energy resources efficiently on the
physical layer.

As we introduced in Section 5.2, RISM aims to elim-
inate the data collisions caused by the hidden terminal
problems. However, we observe the existence of data
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Fig. 9. The average transmission rate comparison among different
resource allocation approaches.

interference in RISM when (a) the node fails to overhear
the ORDER or REPEAT from surrounding users due to the
collisions on the CCC; and (b) the node does not overhear
the ORDER or REPEAT packets on time due to the long
propagation delay in underwater communications. We
plot the delivery ratio of data packets with respect to the
variation of traffic load in different networks. Here, the
packet delivery ratio is defined as the number of packets
successfully received by receivers divided by the total
number of packets sent by senders.

Fig. 10 demonstrates that RISM achieves 90% – 95%
delivery ratio when there is no packet loss caused by the
factors other than collisions. RISM can get higher delivery
ratios, which means lower data collisions, in the mesh
topology than in the tree network. In the tree topology,
the data flow is gradually aggregated to the upper nodes
in the network causing higher collision probabilities than
the case in the mesh topology where the destination of
data packets is one of a random node located in the four
corners resulting in the scattered data flow. When the
probability of packet decoding failure caused by the poor
channel quality is increased to 10% or 20% in our sim-
ulations, the high channel loss becomes the dominated
reason for a low packet delivery ratio, as shown in Fig. 10.
However, it is worth noting that the end-to-end reliability
of RISM can be guaranteed by the acknowledgment and
retransmission mechanism regardless the packet loss on
the hop-by-hop delivery.

Through changing the polling frequency of receivers
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in RISM, a tradeoff exists between the packet delivery
delay and the overhead of control messages. More specif-
ically, if a receiver polls its intended senders frequently,
data packets on a seder will have a short queuing delay,
but at the cost of a low handshake efficiency, since each
round of communication carries only a small number of
data packets. On the other hand, if a receiver waits for
a long time before requesting data, the queuing delay
would be significant. However, it guarantees that enough
data packets could be delivered in each round of hand-
shake process, which improves the energy efficiency.
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For RISM with the smart polling scheme, a receiver
would not send RTR until it predicts that the total number
of packets accumulated on its intended senders goes
over the polling threshold. Therefore, we could change
the polling frequency of a receiver by adjusting γ, the
expected number of data to receive. In Fig. 11 we set the
traffic generation rate as 40 bit/sec and show the tradeoff
between the overhead of control messages and the hop-
by-hop delay of RISM in the tree topology with respect
to γ. In this figure, the overhead of control messages
represents the percentage of energy consumption on con-
trol packets for each successful data transmission. It is
the ratio of energy consumption on transmitting control
messages to that on all packets (control plus data).

The results in Fig. 11 depict that when γ is small,
frequent handshake consumes considerable energy on
control message transmissions. The energy consumption
remarkably reduces with the increment of γ, but results
in a larger delivery delay, especially when γ is over 13.
Hence, in the rest of this paper, we set the threshold for
the adaptive polling as γ = 13 unless stated otherwise.
Many factors, such as the node density, the traffic load

and the requirements on network performance (energy
efficiency and delivery delay), may affect the setting of γ.
Unfortunately, we can not provide a theoretical result on
how to optimize γ. A similar problem has been studied
in the signal detection area [29].

In order to give an insight into the overhead of RISM,
we show the average number of control packets sent for
each successful data transmission in Fig. 12. We could
observe a considerable decrease in the average number
of control messages with the growth of traffic generation
rate. Intuitively, when the traffic is light, the time it takes
for senders to cumulate enough data packets for being
polled will be inevitably long, which is not desirable in
a delay-sensitive application. To tackle this problem, we
set a maximal polling interval for the RISM system. When
either the polling interval exceeds the maximal value or
the number of cumulated packets reaches γ, the receiver
will initiate a request for the data reception. For this
reason, in a situation of low traffic rate, a handshake is
most likely triggered by the maximal polling interval, at
which time senders may have only a few data to send. On
the other hand, when the traffic rate is high, the threshold,
γ, controls the polling frequency. The average number of
control packets used for each data transmission becomes
stable as traffic generation rate grows.

Traffic generation rate per node (bit/sec)
10 20 30 40 50

A
ve

ra
ge

 n
um

be
r 

of
 c

on
tr

ol
 p

ac
ke

ts

0

0.5

1

1.5

2

2.5

3
RTR
ATS
ORDER
REPEAT
ACK

RTR

RTR

RTR

RTR

ATS

ATS

ATS
ATS

RTR
ATS         ORDER          ORDER          ORDER          ORDER          ORDER

REPEAT REPEAT REPEATREPEAT REPEAT
ACK ACK ACK ACKACK

Fig. 12. The average number of control packets used for each suc-
cessful data transmission in the tree topology.

7.2 Performance Comparison
To verify the advantages of the proposed system, we com-
pare RISM with MMAC-CR, a representative MAC proto-
col for CR networks. A brief introduction on MMAC-CR
has been presented in Section 2. We also run RISM with
and without smart polling to validate the effectiveness of
the adaptive data retrieving mechanism. In RISM with
constant polling, the polling frequency is determined
based upon the traffic rate measured at the initialization
stage of a network. In this scheme, receivers send RTR
periodically, and thus could not self-adapt to the variation
of the network traffic.

The performance metrics we focus on in the compari-
son are network throughput, delay and overhead of con-
trol packet. The throughput is bits per second successfully
received by each node in a network. The packet delivery
delay consists of queueing delay, transmission delay and
propagation delay. Considering the low throughput and
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the high collision probability among control messages in
UANs, the queuing delay waiting for channel access is
considerable and dominates the packet delivery delay.
The overhead is calculated as the ratio of energy con-
sumption on transmitting control messages to that on all
packets (control plus data).
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Fig. 13. An example of traffic patterns. (Average traffic generation
rate is 0.02 packet per second for both scenarios. Each time interval
is 50 seconds.)

In order to give comprehensive comparisons, we test
the protocols with two different traffic patterns, namely,
the Poisson process with slowly varying mean value and
a Pareto bursty traffic, as shown in Fig. 13. The Poisson
traffic is generally used to model the arrival process of a
traffic in sensor networks where the data traffic is barely
bursty. A varying mean value in the Poisson process can
simulate the temporal variation of data collection rate.
The Pareto traffic generator could well capture the traffic
features of an event-driven sensor network, where sensor
nodes generate a large amount of observations whenever
a target event is detected.

Fig. 14 demonstrates the performance comparison in
the tree network (Fig. 8(a)) where the data generation
rate follows Poisson process. From Fig. 14 we observe
that RISM outperforms the conventional sender-initiated
MMAC-CR in all aspects. More specifically, smart polling
assisted RISM achieves the highest throughput benefiting
from the parallel reservation. By allowing receivers to
negotiate with multiple senders in parallel, RISM mit-
igates the problem of a low handshake efficiency in
UCANs caused by the long propagation delay and the
long preamble in acoustic modems. Moreover, as shown
in Fig. 14(a), the throughput improvement of RISM dra-
matically increases with the growth of network traffic
generation rate. In applications with heavy traffic loads,
RISM could provide high network throughput, which
makes it a promising solution for efficient spectrum man-
agement. Compared to RISM without smart polling, the
traffic prediction scheme grants receivers the capability to
dynamically poll senders with the varying mean value of
Poisson traffic, thereby leading to a significant through-
put enhancement.

Furthermore, RISM with smart polling allows a net-
work to accommodate a high traffic rate with relatively
low delivery delays, as shown in Fig. 14(b). In a UCAN
with heavy traffic load, the packet queuing delay is the
main source of packet delivery delays in RISM without

smart polling. The traffic prediction enables each receiver
to retrieve data from surrounding senders not only more
efficiently but also more timely than the RISM without
smart polling, thereby significantly reducing the delivery
delay in scenarios with high traffic generation rates.

Another advantage of RISM over sender-initiated pro-
tocols is the low overhead of control messages. When re-
ceivers start negotiation with their surrounding senders,
RISM works as a “semi-centralized” system, where the
spectrum sensing, spectrum sharing and dynamic power
control could efficiently share control packets with each
other. As illustrated in Fig. 14(c), RISM with and with-
out traffic prediction have comparable control overhead,
since both schemes tend to wait for enough cumulated
data packets before starting a handshake process for bet-
ter energy efficiency. MMAC-CR, by contrast, has almost
twice larger overhead than RISM, as MMAC-CR has to
schedule separate control messages for spectrum sensing,
multi-channel rendezvous, and dynamic power control.

Fig.15 uses the same setting as Fig.14, but the network
topology is changed from the tree network to the mesh
network as shown in Fig. 8(b). By comparing the results
in Fig. 14 and Fig. 15, we could observe that RISM has
lower throughput in the mesh network than in the tree
network. This is because, in the tree topology, underwater
nodes generate and forward data packets to a common
destination, namely, the surface node resulting in the
aggregated data flow. Therefore, a receiver could easily
get plenty of packets from nodes beneath it in each
period, which improves the handshake efficiency. In the
mesh network, on the other hand, the destination of data
packets is one of a random node located in the four
corners, which “diluents” the traffic. Therefore, a receiver
usually retrieves fewer data packets within a given period
in a mesh network than that in a tree network, which
reduces the handshake efficiency and leads to a lower
nodal throughput for RISM.

By contrast, MMAC-CR can achieve higher through-
put in a mesh networks than that in tree networks. In-
tuitively, in tree networks, multiple senders choosing the
same relay node causes heavy congestion for the channel
access. In mesh network, however, the data packets are
scattered resulting in lower collision probability on con-
trol messages. Due to the similar reason, RISM has a much
longer delay in the mesh network than that in the tree net-
work, whereas MMAC-CR can achieve a shorter delay in
the mesh network. Although RISM works more efficiently
in a tree network, it still outperforms the sender-initiated
MMAC-CR in terms of network throughput and energy
efficiency in the mesh network.

By comparing the results in Fig. 14 and Fig. 16, we
could realize how a traffic pattern affects the performance
of different protocols. For Pareto bursty traffic, the instan-
taneous traffic is bursty but the average data generation
rate is constant in the simulation. As for Poisson traffic,
we periodically change the average traffic generation rate
from 0.5× to 1.5× of the mean value in each test.

We observe that RISM with smart polling has compa-
rable performance with both Poisson traffic and bursty
traffic, i.e. RISM is barely affected by the traffic pattern.
With an assistance of traffic prediction, the smart polling
mechanism could capture the variations in the network
traffic, thereby making receivers in RISM request data
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Fig. 14. Performance comparison for Poisson traffic with slowly varying mean value in tree topology.
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Fig. 15. Performance comparison for Poisson traffic with slowly varying mean value in mesh topology.
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Fig. 16. Performance comparison for Pareto bursty traffic in tree topology.

at a proper time. RISM without smart polling, on the
other hand, has much lower throughput than RISM with
smart polling when the network traffic varies with time,
as shown in Fig. 14(a). The difference on the throughput
of RISM with and without smart polling becomes less
significant with bursty traffic. This indicates that the
adaptive polling could bring more enhancement to RISM
when the average traffic rate is more dynamic.

It is worth noting that in simulations we do not take
the guard time into consideration. More specifically, in
order to prevent unexpected collisions among control
messages and data packets from an inaccurate distance
measurement, a synchronization error and the drifting
of acoustic nodes with an ocean current, a guard time

among sending packets is usually required in a UCAN.
In this situation, the absolute values of throughput, delay
and overhead of MAC protocols showed in this section
may be lower than that in a real world. The relative
performance among different protocols, however, will not
change a lot.

8 CONCLUSIONS

In this paper, we designed a receiver-initiated spectrum
management system, RISM, to achieve environment-
friendly and spectrum-efficient communications for un-
derwater cognitive acoustic networks. In RISM, receivers
replace the role of senders in conventional protocols as



1536-1233 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMC.2016.2544757, IEEE Transactions on Mobile Computing

14

an initializer of a handshake process. This allows receiver
in each round of handshake to request packets from
multiple senders in parallel.

In addition, in RISM, the three components, i.e.,
the cooperative spectrum sensing, spectrum sharing and
spectrum decision, do not generate control messages sep-
arately as independent pieces. Instead, they share control
packets with each other without incurring additional
control overhead, which significantly improves the nego-
tiation efficiency considering the high latency in UCANs
and the long preamble in acoustic modems.

However, there is a unique challenge in receiver-
initiated approaches for receivers to decide when to
poll without prior knowledge of the data cumulation
on senders. This issue is tackled by adopting the traffic
predictor. A receiver in RISM could smartly poll senders
adapting to the variation of senders’ traffic loads. By
employing the smart polling scheme, the receiver could
initiate handshakes timely to reduce the packet queuing
delay while constraining the energy consumption on
transmitting control packets.

Simulation results show that the performance of RISM
with smart polling scheme outperforms MMAC-CR, a
representative CR based MAC protocol. Specifically, the
throughput of RISM is 6× higher than MMAC-CR, while
the hop-by-hop delay and overhead of control packet
are only 0.25× and 0.3× of MMAC-CR. Moreover, RISM
could work better in a tree network than in a mesh net-
work. The throughput in the former scenario is near 2×
than that in the later one, while maintaining comparable
hop-by-hop delay and overhead of control packet.

We believe that RISM is a promising system that
enables cognitive technique to work efficiently and
environment-friendly in UANs.
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